15x^2=2(11-7x)

Simple and best practice solution for 15x^2=2(11-7x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15x^2=2(11-7x) equation:


Simplifying
15x2 = 2(11 + -7x)
15x2 = (11 * 2 + -7x * 2)
15x2 = (22 + -14x)

Solving
15x2 = 22 + -14x

Solving for variable 'x'.

Reorder the terms:
-22 + 14x + 15x2 = 22 + -14x + -22 + 14x

Reorder the terms:
-22 + 14x + 15x2 = 22 + -22 + -14x + 14x

Combine like terms: 22 + -22 = 0
-22 + 14x + 15x2 = 0 + -14x + 14x
-22 + 14x + 15x2 = -14x + 14x

Combine like terms: -14x + 14x = 0
-22 + 14x + 15x2 = 0

Begin completing the square.  Divide all terms by
15 the coefficient of the squared term: 

Divide each side by '15'.
-1.466666667 + 0.9333333333x + x2 = 0

Move the constant term to the right:

Add '1.466666667' to each side of the equation.
-1.466666667 + 0.9333333333x + 1.466666667 + x2 = 0 + 1.466666667

Reorder the terms:
-1.466666667 + 1.466666667 + 0.9333333333x + x2 = 0 + 1.466666667

Combine like terms: -1.466666667 + 1.466666667 = 0.000000000
0.000000000 + 0.9333333333x + x2 = 0 + 1.466666667
0.9333333333x + x2 = 0 + 1.466666667

Combine like terms: 0 + 1.466666667 = 1.466666667
0.9333333333x + x2 = 1.466666667

The x term is 0.9333333333x.  Take half its coefficient (0.4666666667).
Square it (0.2177777778) and add it to both sides.

Add '0.2177777778' to each side of the equation.
0.9333333333x + 0.2177777778 + x2 = 1.466666667 + 0.2177777778

Reorder the terms:
0.2177777778 + 0.9333333333x + x2 = 1.466666667 + 0.2177777778

Combine like terms: 1.466666667 + 0.2177777778 = 1.6844444448
0.2177777778 + 0.9333333333x + x2 = 1.6844444448

Factor a perfect square on the left side:
(x + 0.4666666667)(x + 0.4666666667) = 1.6844444448

Calculate the square root of the right side: 1.297861489

Break this problem into two subproblems by setting 
(x + 0.4666666667) equal to 1.297861489 and -1.297861489.

Subproblem 1

x + 0.4666666667 = 1.297861489 Simplifying x + 0.4666666667 = 1.297861489 Reorder the terms: 0.4666666667 + x = 1.297861489 Solving 0.4666666667 + x = 1.297861489 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4666666667' to each side of the equation. 0.4666666667 + -0.4666666667 + x = 1.297861489 + -0.4666666667 Combine like terms: 0.4666666667 + -0.4666666667 = 0.0000000000 0.0000000000 + x = 1.297861489 + -0.4666666667 x = 1.297861489 + -0.4666666667 Combine like terms: 1.297861489 + -0.4666666667 = 0.8311948223 x = 0.8311948223 Simplifying x = 0.8311948223

Subproblem 2

x + 0.4666666667 = -1.297861489 Simplifying x + 0.4666666667 = -1.297861489 Reorder the terms: 0.4666666667 + x = -1.297861489 Solving 0.4666666667 + x = -1.297861489 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4666666667' to each side of the equation. 0.4666666667 + -0.4666666667 + x = -1.297861489 + -0.4666666667 Combine like terms: 0.4666666667 + -0.4666666667 = 0.0000000000 0.0000000000 + x = -1.297861489 + -0.4666666667 x = -1.297861489 + -0.4666666667 Combine like terms: -1.297861489 + -0.4666666667 = -1.7645281557 x = -1.7645281557 Simplifying x = -1.7645281557

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.8311948223, -1.7645281557}

See similar equations:

| (2x+2x-4)(2x+2x-4)(2x+2x-4)= | | 15x^2=2(11-7) | | 3mn-9=0 | | 32x+7x^2=15 | | x+(x*0.15)=20000 | | 4(x^2+6x)+35=0 | | 6(k+8)= | | (4n-1)= | | 9ab/9a | | 3(x+2y)-2(x+y)= | | -8(7x-6)= | | 6(2x-4y)= | | 2r^2+11r-15=0 | | 7y=4-5 | | 7y=4x-5 | | 30h-20h= | | x^2-14=5xfactoring | | (x-4)=69 | | 81/3Log2^6 | | 32+50*12-2*6= | | 7y+6=3y-10 | | 91/×=7 | | 11d+7=3d+55 | | 3y+17=50 | | n/9=54/81 | | (8x-4y+2)+(3x+2y-5)=0 | | 7(a+9)=91 | | n9=54/81 | | ln(x+3)-ln(19)=ln(13) | | (-8)-14(y-3)=(-2y)-(y-5) | | 4n+9=57 | | -8-14(y-3)=-2y-(y-5) |

Equations solver categories